
On Invariant and Equivariant Neural Networks

Towards Geometric Machine Learning

Gabriel Ong

May 2022

MATH 2805: Mathematical Principles of Machine Learning



Gabriel Ong; On Invariant and Equivariant Neural Networks 2

1 Invariance and Equivariance as a Desiderata

There are many transformations one can apply to training data of a neural network that

ought not affect the output of the neural network’s prediction. For example, why should an

image of a cat be classified otherwise if it is fed into an algorithm upside down or after some

planar translation? It would be desirable if our neural networks would not be affected by

such transformations. Let us recall the following definitions (Sannai et al., 2019).

Definition 1.1 (Invariance). Let G be a finite group and f ∶ Rn → Rm where G ⟳ Rn.

Suppose that φ ∶ G ↪ Sn is given. f is G-invariant if and only if f(φ(g) ⋅ x⃗) = f(x⃗) for any
g ∈ G and any x⃗ ∈ Rn.

Definition 1.2 (Equivariance). Let G be a finite group and f ∶ Rn → Rm where G⟳ Rn

and G⟳ Rm. Suppose that φ ∶ G↪ Sn and ψ ∶ G↪ Sm are given. f is G-equivariant if and

only if f(φ(g) ⋅ x⃗) = ψ(g) ⋅ f(x⃗) for all g ∈ G and any x⃗ ∈ Rn.

Thus invariance tells us that for a fixed input x⃗ ∈ Rn the output of our function f is unchanged

under any G action on the input. Equivariance tells us that if a group G acts on both the

input and output space, then for some fixed output x⃗ ∈ Rn taking the function of the g-action

on the input is the same as taking the g-action on the output – in other words, that the

group action commutes under function composition with the function f . We will make these

notions of groups and actions more precise in the following section. Let us consider the

following examples to get an intuitive understanding of invariance and equivariance.

Example 1. Let N ∶ Rn → [k] be a k-class image classifier and τ ∶ Rn → Rn a translation.

We would like for (N ○ τ)(x⃗) = N (x⃗) – that our neural network would classify both an

image and its translate in the same way. Namely an idealized neural network N would be τ

invariant.

Example 2. Let f ∶ Rn → Rn be a function that sharpens images and τ ∶ Rn → Rn be a

90○ clockwise rotation. We would like for (f ○ τ)(x⃗) = (τ ○ f)(x⃗) – that first rotating then

sharpening the image is the same as first sharpening then rotating the image. Namely, we

would like our image sharpening function f to be equivariant under τ .

The examples above are all but two examples that invariance and equivariance are desiderata

for algorithms generally, and neural networks specifically. We note that the transformations

we have seen so far are relatively simple. Ideally we seek layers of deep neural networks



Gabriel Ong; On Invariant and Equivariant Neural Networks 3

that are not only equivariant to mundane transformations like rotations and translations

but also for more esoteric types of transformations such as reflections. In fact, in this

paper, we will discuss why equivariance under the group wallpaper p4m is a desideratum of

image classification networks. Building to this goal requires a more mathematically mature

understanding of transformations and symmetries – one achieved through the study of the

theory of groups.

2 On the Theory of Groups and their Actions

Let us recall the following definition from our first course in abstract algebra.

Definition 2.1 (Group). Let S be a set and ∗ ∶ G ×G → G a binary operation. G = (G,∗)
is a group if and only if the following conditions hold:

• g ∗ h ∈ G for all g, h ∈ G.

• (g ∗ h) ∗ k = g ∗ (h ∗ k) for all g, h, k ∈ G.

• There exists uniquely e ∈ G such that g ∗ e = e ∗ g = g for all g ∈ G.

• For all g ∈ G there exists uniquely g−1 ∈ G such that g ∗ g−1 = g−1 ∗ g = e.

However, in this case, we are concerned with how functions act on spaces such as the space

of input data to a machine learning model. Thus we must understand how groups interact

with certain spaces of interest.

Definition 2.2 (Group Action). Let G be a group and X be a set. The action G on X is

a map G ×X →X such that

• eG ⋅ x = x for all x ∈X

• h ⋅ (g ⋅ x) = (g ∗ h) ⋅ x for all g, h ∈ G and x ∈X.

where we write G⟳X.

Let us now define the following.



Gabriel Ong; On Invariant and Equivariant Neural Networks 4

Definition 2.3 (Orbit). Let G⟳X. The orbit of x ∈X is the set

OrbX(x) = {x′ ∈X ∣x ⋅ g = x′,∀g ∈ G}.

Definition 2.4 (Stabilizer). Let G⟳X. The stabilizer of x ∈X is the set

StabG(x) = {g ∈ G∣g ⋅ x = x}.

This gives us the following theorem.

Theorem 2.1 (Orbit-Stabilizer). Let G be a finite group and X a set where G⟳ X. For

all x ∈X the following identity holds:

∣G∣ = ∣OrbX(x)∣ ⋅ ∣StabG(x)∣.

We omit the proof. We will eventually prove universal approximation for G equivariant

neural networks when G is a finite group. We will thus need the following theorem of

Cayely.

Theorem 2.2 (Cayley). If G is a finite group where ∣G∣ = n then G is isomorphic to some

subgroup of Sn.

We conclude with two more definitions foundational to the understanding of group actions.

Definition 2.5 (Transitive Actions). Let G be a group and X a set where G⟳X. G⟳X

is transitive if and only if for all x,x′ ∈X there exists g ∈ G such that g ⋅ x = x′.

Definition 2.6 (Homogeneous Spaces). Let G be a group and X a set. If G ⟳ X is

transitive then X is a homogeneous space of a group G

Definition 2.7 (G-Stability). Let G be a group and X a set. If ⋃x∈X OrbX(x) ⊆X then X

is stable under the G-action.

While these definitions and theorems may seem unmotivated and abstract, they actually

play a foundational role in equivariance in machine learning. Let us now turn to an example

pertinent to our task of image classification. In particular in our later experiment we will

employ the symmetry group p4m.

Example 3 (The p4m Group). Imagine a plane infinitely tiled as follows (Kennedy, 2004):



Gabriel Ong; On Invariant and Equivariant Neural Networks 5

The pattern-preserving symmetries here consist of rotations, translations, and reflections.

To be more precise rotations by multiples of 90○ are pattern preserving, as are reflections

along the vertical, horizontal, and both diagonal axes. Finally pattern preserving translations

are also part of the pattern-preserving symmetries.

3 Groups and Machine Learning

We have previously seen that convolutional neural networks are especially powerful algo-

rithmic tools for feature detection. By design, convolutional neural networks are translation

invariant – their output is unchanged when an object is shifted around in the grid so long

as the grid still contains the entire object of interest. However, we seek to make our convo-

lutional layers invariant under other “realistic” symmetries such as reflections. Cohen and

Welling sought to answer the call by introducing group equivariant neural networks that

increases the degree of weight sharing (Engelenburg, 2020). In particular, group equivari-

ant neural networks are able to learn features under rotations and vertical, horizontal, and

diagonal reflections (Engelenburg, 2020). This implies that the neural network with group

equivariant layers is able to classify objects regardless of its classification.

We know from a celebrated theorem of Cybenko and others that continuous functions

f ∶ K → R from some compact subset K ⊂ Rn we can find some neural network N ∶ K → R
such that ∥f(x⃗)−N (x⃗)∥ < ϵ for any choice of ϵ. Namely for any choice of continuous function



Gabriel Ong; On Invariant and Equivariant Neural Networks 6

f we can find a neural network N that approximates f with arbitrary precision. Yet, it is

entirely unclear if this theorem holds for these new classes of invariant and equivariant neural

networks. In the 2017 work of Zaheer and coworkers, they showed the following.

Theorem 3.1 (Zaheer et al., 2017). Let G be a finite group which is a subgroup of Sn.

Let K ⊂ Rn be compact which is stable for the for the corresponding G-action in Rn. Then

for any f ∶ K → Rm which is continuous and G-invariant and any ϵ > 0 there exists some

invariant neural network N Inv
G ∶ Rn → Rm such that ∥f −N Inv

G ∥∞ < ϵ.

Recall that we view our invariant neural network as

N Inv
G =∑ ○LH ○ReLU ○ ⋅ ⋅ ⋅ ○L1

where Li ∶ Rndi×ai → Rndi×ai+1 are linear maps (defined by weight matrices) such that Li(g⋅y⃗) =
g ⋅Li(y⃗) for all y⃗ ∈ Rndi×ai and g ∈ G where the group action is on each layer except the output

layer. We also recall the following proposition from real analysis.

Proposition 3.2 (Kolmogorov-Arnold). Let K ⊂ Rn be a compact set and f ∶ K → R a

continuous Sn invariant function. We can write

f = ρ(
n

∑
i=1
ϕ(xi))

for some continuous function ρ ∶ Rn+1 → R and ϕ ∶ R→ Rn+1 defined as x↦ (1, x, x2, . . . , xn)T .

In the remainder of this section, we show the following theorem (Sannai et al., 2019).

Theorem 3.3 (Universal Approximation of G-Equivariant CNNs). Let G be a finite group

which is a subgroup of Sn. Let K ⊂ Rn be compact and stable for the corresponding G-action

in Rn. Then for any f ∶ K → Rn by x⃗ ↦ (f1(x⃗), . . . , fn(x⃗)) which is continuous and G-

equivariant and any ϵ > 0 there exists some equivariant neural network N Equiv
G ∶K → Rn such

that ∥f −N Equiv
G ∥∞ < ϵ.

Our proof will proceed as follows. We will first show reduce an Sn equivariant map F

to a Stab(1) invariant function where Stab(1) is the stabilizer of the number “1” in the

natural action of Sn on [n]. We will then use the Kolmogorov-Arnold theorem to give us

the existence of a Stab(1) invariant function f . By Theorem 3.1, we know that there is

an invariant deep neural network approximating f . From here we can construct a neural

network approximating F . We follow closely the proof of Sannai et al., 2019.



Gabriel Ong; On Invariant and Equivariant Neural Networks 7

Proposition 3.4 (Equivariance and Invariance). F ∶ Rn → Rn is Sn equivariant if and only

if there is a Stab(1)-invariant function f ∶ Rn → R such that F = (f, f ○ (12), . . . , f ○ (1n))T

where we denote (1k) ∈ Sn the transposition of 1 and k.

Proof. (Ô⇒) Suppose Stab(1) is a Stab(1) invariant function f , we show that the map

F = (f, f ○(12), . . . , f ○(1n))T is Sn equivariant. We know from our first course in the theory

of groups that the transpositions (1i) generate Sn for 1 ≤ i ≤ n. As such, it suffices to show

that F ((1i) ⋅ x) = (1i) ⋅ F (x) for any 1 ≤ i ≤ n. Denote F (x)j the jth entry of F (x). If i ≠ j
then F ((1i) ⋅ x)j = f ((1j) ⋅ ((1i) ⋅ x)) since f is Stab(1) invariant. By analagous arguments

we have F ((1i) ⋅ x)i = f(x) = F (x)1 and F ((1i) ⋅ x)1 = f((1i) ⋅ x) = F (x)i demonstrating

F ((1i) ⋅ x) = (1i) ⋅ F (x).

(⇐Ô) Conversely suppose F is Sn equivariant so F (σx) = σF (x) for all x ∈ Rn and

σ ∈ Sn. We set F = (f1, . . . , fn)T where each fi ∶ Rn → R for all 1 ≤ i ≤ n. But F is

Sn equivariant by definition so fi(σ ⋅ x) = fσ−1(i)(x) for any x ∈ Rn and σ ∈ Sn. This

tells us that f1(σ ⋅ x) = fσ−1(1)(x) = f1(x) since σ ∈ Stab(1) implies that σ−1 ∈ Stab(1) as
well. Thus f1 is Stab(1) invariant. Now for i = 1 and the transposition σ = (1j) where
j ≠ 1 we have f1((1j) ⋅ x) = f(1j)(x) = fj(x) since (1j) = (1j)−1. But this tells us that

F = (f1, f1 ○ (12), . . . , f1 ○ (1n))T which was precisely what we wanted.

Note that Stab(1) ≅ Sn−1 by the Orbit-Stabilizer theorem so we know that Stab(1) invariant
functions f ∶ Rn → R are Sn−1 invariant functions allowing us to apply Theorem 3.1. We

thus have the following, that is a corollary of Theorem 3.1 and Proposition 3.2.

Proposition 3.5 (Representability of Stab(1) Invariant Functions). Let K ⊂ Rn be compact

and f ∶K → R a continuous Stab(1) invariant function. We can write

f = ρ(x1,
n

∑
i=2
ϕ(xi))

for some continuous function ρ ∶ Rn+1 → R and ϕ ∶ R→ Rn+1 defined as x↦ (1, x, x2, . . . , xn)T .

Proof. If f is Stab(1) invariant then it is Sn−1 invariant. The theorem of Kolmogorov-Arnold

we can induce the decomposition on the coordinates x2, . . . , xn to give us the result.

From this, we can see that the Stab(1) invariant function f ∶ Rn → R can be written as



Gabriel Ong; On Invariant and Equivariant Neural Networks 8

f = ρ ○L ○Φ where Φ ∶ Rn → R × (Rn)n−1 and L ∶ R × (Rn)n−1 → R ×Rn by

Φ(x1, . . . , xn) = (x1, ϕ(x1), . . . , ϕ(xn)) L(x, (y1, . . . , yn−1)) = (x,
n−1
∑
i=1
yi)

So the Stab(1) invariant function f is in fact a composition of a continuous functions ρ,L,Φ

where ρ and Φ are Stab(1) invariant. Thus by Theorem 3.1 we can replace both ρ and Φ by

a invariant neural network approximations. Moreover with L continuous we can approximate

L by a neural network up to arbitrary precision as well. Thus their composition approximates

f up to arbitrary precision. Let us now apply Proposition 3.4 which tells us for F (x) an
Sn equivariant function, we can write

F (x1, . . . , xn) = (f, f ○ (12), . . . , f ○ (1n))T = (f, . . . , f)T ○ (ε, (12), . . . , (1n))T

where ε ∈ Sn is the identity permutation and the composition of functions taken point-

wise. The function (f, . . . , f)T can be approximated by some deep neural network since

each function f can be approximated by a deep neural network. This function is also Sn

equivariant since it is the same in every coordinate. It remains to show that the function

(ε, (12), . . . , (1n))T is Sn equivariant as well.

We want to show that we can approximate (ε, (12), . . . , (1n))T with a neural network of

arbitrary precision. Let us first state the following definition.

Definition 3.1 (The Sn Action on V n). Let V be a n-dimensional real vector space. Suppose

Stab(1) acts on V by permutation denoted σ ⋅ x⃗. We can thus define the action ∗ ∶ Sn×V n →
V n as follows:

σ ∗ (x⃗1, . . . , x⃗n) = (σ̃1 ⋅ x⃗σ−1(1), . . . , σ̃n ⋅ x⃗σ−1(n)).

Where for any 1 ≤ i ≤ n we set σ̃i ∈ Stab(1) by (1i)σ = σ̃i(1σ−1(i)). We now show the

following proposition.

Proposition 3.6 (∗ is Well-Defined). The action ∗ ∶ Sn × V n → V n is well-defined.

Proof. Note that Sn = ⊔n
i=1 Stab(1)(1i) since if (1σ−1(1)) ∈ Stab(1) this σ ∈ Stab(1)(1σ−1(i))

so for (1i)σ then (1i)σ is in the coset Stab(1)(1σ−1(i)) since Stab(1)(1((1i)σ)−1(1)) =
Stab(1)(1σ−1(i)). Thus we have a unique element σ̃i ∈ Stab(1) such that (1i)σ = σ̃i(1σ−1(i)).
Suppose that σ, τ ∈ Sn and X ∈ V n so

τ ∗ (σ ∗X) = τ ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− σ̃1 ⋅ x⃗Tσ−1(1) −
⋮

− σ̃n ⋅ x⃗Tσ−1(n) −

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− τ̃1 ˜στ−1(1) ⋅ x⃗Tσ−1(τ−1(1)) −
⋮

− τ̃1 ˜στ−1(n) ⋅ x⃗Tσ−1(τ−1(n)) −

⎤⎥⎥⎥⎥⎥⎥⎥⎦



Gabriel Ong; On Invariant and Equivariant Neural Networks 9

but from above we from σ̃i = (1i)σ(1σ−1(i)) and thus

τ̃i ˜στ−1(i) = (1i)τ(1τ−1(i))(1τ−1(i))σ(1σ−1(τ−1(i)))
= (1i)τσ(1(τσ)−1(i))
= (̃τσ)i

so in fact

τ ∗ (σ ∗X) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− τ̃1 ˜στ−1(1) ⋅ x⃗Tσ−1(τ−1(1)) −
⋮

− τ̃1 ˜στ−1(n) ⋅ x⃗Tσ−1(τ−1(n)) −

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− (̃στ)1 ⋅ x⃗T(τσ)−1(1) −
⋮

− (̃στ)n ⋅ x⃗T(τσ)−1(n) −

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= τσ ∗X

giving us well-definedness.

The above proposition is key to showing that the layer (ε, (12), . . . , (1n))T can be approx-

imated with a neural network up to arbitrary precision. Note that (f, . . . , f)T has input

space Rn×n = V n (since each coordinate may take different inputs under the Sn action) so we

want to show that there exists an equivariant input layer g ∶ Rn → V n where g = (g1, . . . , gn)
such that each gi = ReLU ○ l ○ (1i) for some l ∶ Rn → V Stab(1) invariant. We can now prove

this proposition.

Proposition 3.7 (Sn Equivariance of G). g ∶ Rn → V n is equivariant under the Sn action.

Proof. For any i and σ ∈ Sn and some x⃗ ∈ Rn we have

(l ○ (1i) ○ In)(σ ⋅ x⃗) = l(((1i)σ) ⋅ x⃗).

Moreover for any i there exists σ̃i ∈ Sn uniquely such that (1i)σ = σ̃i(1σ−1(i)) per Definition

3.1. We thus have

l(((1i)σ) ⋅ x⃗) = l(σ̃i(1σ−1(i)) ⋅ x⃗)
= σ̃i ⋅ l((1σ−1(i)) ⋅ x⃗) by Stab(1) equivariance of l

so we have that gi as

(σ ∗ g(x⃗))i = σ̃i ⋅ g(x⃗)σ−1(i)
= σ̃i ⋅ (ReLU(l((1σ−1(i)) ⋅ x⃗)))

but we know that σ̃i ○ReLU = ReLU ○ σ̃i so this gives us that g is Sn equivariant since it is

equivariant in each coordinate.



Gabriel Ong; On Invariant and Equivariant Neural Networks 10

This allows us to conclude the proof of the theorem.

Proof of Theorem 3.2. Let F be an equivariant function. From above, we can write

F (x1, . . . , xn) = (f, f ○ (12), . . . , f ○ (1n))T = (f, . . . , f)T ○ (ε, (12), . . . , (1n))T .

We know that (f, . . . , f)T can be approximated by some neural network N with arbitrary

precision since each coordinate function f can be approximated with arbitrary precision. The

input layer (ε, (12), . . . , (1n))T ∶ Rn → Rn×n can also be approximated by a neural network

with arbitrary precision by g. Thus the composition N ○ g gives us an approximation of F

by a neural network up to arbitrary precision as well, concluding our proof.

We remark, however, that this theorem only tells us about the approximation capability

of equivariant layers but this is in fact sufficient since we know about the correspondence

between convolutional and deep neural network layers.

4 An Experiment

We conduct an experiment comparing the performance of a group equivariant neural net-

work against a traditional convolutional neural network on the CIFAR10 image classification

dataset. The CIFAR10 dataset consists of 60,000 32 × 32 colored images equally distributed

between airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. To

allow for a fair comparison, we allow our CNN model to view all D4 symmetries of CIFAR10

images, namely the training set for our model has all 8 possible rotations and reflections of

the square image.

We employ the Groupy package for group convolutional layer operations (Cohen and Welling,

2016) and structure our convolutional layers as follows:



Gabriel Ong; On Invariant and Equivariant Neural Networks 11

where on the left we have our group equivariant CNN and on the right we have our baseline

CNN. The outputs of these convolutional layers are then fed, separately, into a 3× 3 pooling

layer followed by dense layers of size 1600, 512, and 10. We also implement a dropout of

0.25 between the second-to-last and final dense layer. The CIFAR10 dataset of size 60,000

is already split into a training set of 50,000 images, and a test set of 10,000 images. From

the set of 50,000 images, we remove 20% as a validation set before proceeding with training.

We employ a batch size of 4 and use stochastic gradient descent with a learning rate of 0.001

with momentum 0.9. We train for 20 epochs.

We observe that both our models converge, but that the p4m-CNN converges faster than the

traditional CNN since the entropy loss for the both the training and validation set decreases



Gabriel Ong; On Invariant and Equivariant Neural Networks 12

more quickly in the p4m-CNN model than it does for the CNN model. We also conjecture

that the p4m-CNN model is less susceptible to overtraining since its validation loss increases

more slowly than that of the CNN model. Following best-practices, we use the model with

lowest validation error for training – this was in the 4th epoch for the p4m-CNN and the

5th epoch for the CNN. We then test the model on the 10,000 image CIFAR 10 test set and

report both cross-entropy loss as well as classification accuracy below.

Metric p4m-CNN CNN

Cross-Entropy Loss 0.679 0.832

Classification Accuracy 77% 70%

From these results, we can see that our p4m-CNN model outperforms the standard CNN

model by a considerable margin. Given that our baseline CNN model was fed with all D4

symmetries of the square image, the results imply that employing p4m convolutions provides

substantial insight into the underlying structure of the data over mere data augumentation.

Examining the class-by-class classification breakdown we have the following:

Class p4m-CNN CNN

Plane 75.8 70.9

Car 88.9 82.1

Bird 65.7 63.7

Cat 55.9 35.7

Deer 71.0 74.0

Dog 75.0 62.0

Frog 85.1 80.1

Horse 79.9 68.4

Ship 86.2 83.3

Truck 87.9 88.7

We observe that the p4m-CNN outperforms the traditional CNN in all classes except for

“Deer” in which it only underperforms by 3%. These results mimic those found in the lit-

erature where p4m convolutional neural networks are found to be much more powerful than

traditional CNNs (Cohen and Welling, 2016). In particular, our results support the findings

of Cohen and Welling where p4m-CNNs outperform standard CNNs on the rotated MINST

dataset, consiting of rotated images of handwritten digits.



Gabriel Ong; On Invariant and Equivariant Neural Networks 13

p4m-CNNs, however, are significantly more time consuming to train. Even with a train-

ing set 8 times the size, the CNN was able to finish training in about half the time it took to

train the p4m-CNN. Using the summary syntax in PyTorch, we find that the p4m-CNN re-

quires 12.42mb in each forward/backward pass while the standard CNN model only requires

1.66mb. This means that the p4m-CNN model requires almost 8 times the memory of the

standard CNN. Using p4m-CNNs is thus a highly computationally intensive task.

We remark that these results could be improved upon drastically improved. Recently devel-

oped techniques such as residual networks (He et al., 2015) have allowed for classification of

CIFAR10 on regular convolutional neural networks with accuracy approaching 95%. This

could indeed narrow the performance gap between group convolutional and traditional con-

volutional neural networks.

5 Concluding Remarks

Group convolutional neural networks provide a way to exploit additional symmetric structure

in data beyond translation symmetries. Moreover, we have shown them to be as powerful

as traditional neural networks due to their universal approximation capabilities. Yet im-

plementing group convolutional neural networks is a fraught matter. Group convolutional

neural network packages have yet to be subsumed by the standard machine learning toolkits

such as PyTorch and TensorFlow. Moreover their significantly higher memory requirements

makes large-scale implementation of group convolutional neural networks extremely diffi-

cult especially as task sizes scale. Thus, for now, it seems that group convolutional neural

networks are destined to remain on the theoretical sidelines.



Gabriel Ong; On Invariant and Equivariant Neural Networks 14

References

Cohen T. S. and Welling M. (2016). “Group Equivariant Convolutional Networks”. doi:

10.48550/ARXIV.1602.07576. url: https://arxiv.org/abs/1602.07576.

Engelenburg C. van (2020). Geometric deep learning: Group equivariant Convolutional Net-

works. url: https ://medium.com/swlh/geometric - deep- learning- group- equivariant -

convolutional-networks-ec687c7a7b41.

He K., Zhang X., Ren S., and Sun J. (2015). Deep Residual Learning for Image Recognition.

doi: 10.48550/ARXIV.1512.03385. url: https://arxiv.org/abs/1512.03385.

Kennedy T. (2004). “Compact packings of the plane with two sizes of discs”. doi: 10.48550/

ARXIV.MATH/0407145. url: https://arxiv.org/abs/math/0407145.

Sannai A., Takai Y., and Cordonnier M. (2019). Universal approximations of permutation

invariant/equivariant functions by deep neural networks. doi: 10 .48550/ARXIV.1903.

01939. url: https://arxiv.org/abs/1903.01939.

Zaheer M., Kottur S., Ravanbakhsh S., Poczos B., Salakhutdinov R., and Smola A. (2017).

Deep Sets. doi: 10.48550/ARXIV.1703.06114. url: https://arxiv.org/abs/1703.06114.


